Last-Iterate Convergent Policy Gradient Primal-Dual Methods for Constrained MDPs

Dongsheng Ding

a joint work with Chen-Yu Wei, Kaiqing Zhang, and Alejandro Ribeiro

Constrained policy optimization

■ FEATURES

- * non-convex functional constrained optimization
- * randomized optimal policy
- * no uniform optimal policy across all states

Lagrangian-based approaches

$$L(\pi, \lambda) := V_r^{\pi}(\rho) + \lambda V_g^{\pi}(\rho)$$

ISSUES

⋆ scalarization fallacy

suboptimal

e.g., Zahavy et al., NeurIPS 2021

* dual methods

two-time-scale

e.g., Ying, et al., AISTATS 2021; Gladin et al., AISTATS 2023

* primal-dual methods

oscillation

e.g., Stooke, et al., ICML 2020; Ding et al., NeurIPS 2020

Question

Can the policy iterates of a single-time-scale policy-based primal-dual algorithm converge to an optimal constrained policy with non-asymptotic rate?

Non-asymptotic last-iterate performance

■ REGULARIZED POLICY GRADIENT PRIMAL-DUAL METHOD

policy last-iterate convergence with sublinear error rate

⋆ tabular

dimension-free

⋆ function approximation

up to approx. error

■ OPTIMISTIC POLICY GRADIENT PRIMAL-DUAL METHOD

policy last-iterate convergence with linear error rate

tabular

problem-dependent

error rate - optimality gap & constraint violation

Constrained saddle-point problem

CHALLENGES

- * non-convex constrained saddle-point problem
- randomized optimal policy
- * no uniform optimal policy across all states
- * asymmetric two-player game

Settlement I: Regularized method

REGULARIZED LAGRANGIAN

$$L_{\tau}(\pi,\lambda) = L(\pi,\lambda) + \tau \left(\mathcal{H}(\pi) + \frac{1}{2}\lambda^2\right)$$

Li, et al., arXiv 2021

au - regularization parameter

$$\begin{split} \mathcal{H}(\pi) \; := \; (1-\gamma) \mathbb{E}\left[\sum_{t=0}^{\infty} -\gamma^t \log \pi(a_t \,|\, s_t) \right] \; - \; \text{entropy-like term} \\ \left(\pi_{\tau}^{\star}, \lambda_{\tau}^{\star} \right) \; - \; \tau \text{-near saddle point of} \; L(\pi, \lambda) \end{split}$$

Regularized policy gradient primal-dual method

■ REGULARIZED POLICY PRIMAL-DUAL UPDATE

$$\pi^{+}(\cdot \,|\, s) \; \propto \; \pi(\cdot \,|\, s) \exp\left(\frac{\eta}{1-\gamma} Q_{L_{\tau}}^{\pi}(s,\cdot)\right) \quad \text{(MWU)}$$

$$\lambda^{+} \; = \; \mathcal{P}\left(\, (1-\eta \tau)\lambda \,-\, \eta \, V_{g}^{\pi}(\rho)\,\right)$$

$$Q_{L_{\tau}}^{\pi} := Q_{r+\lambda g-\tau \log \pi}^{\pi}(s, a)$$

- * $\tau = 0$ NPG-PD (Ding et al., NeurlPS 2020)
- $\star \eta > 0$ single-time-scale

Non-asymptotic last-iterate performance

Theorem (informal)

 \bigstar Distance of (π_t, λ_t) to $(\pi_\tau^\star, \lambda_\tau^\star)$

$$\mathsf{Dist}(\pi_t, \pi_\tau^\star) + \frac{1}{2} (\lambda_t - \lambda_\tau^\star)^2 \ \lesssim \ \mathrm{e}^{-\eta \tau t} + \frac{\eta}{\tau} \ \text{ for any } t \geq 0$$

Dist – visitation-weighted KL divergence

 \star (π_t, λ_t) – exponential stability

Implication (informal)

★ Optimality gap & Constraint violation

$$V_r^{\star}(\rho) - V_r^{(\pi_T)}(\rho) \, \leq \, \epsilon \quad \text{and} \quad - V_g^{(\pi_T)}(\rho) \, \leq \, \epsilon$$

$$T = \Omega\left(\frac{1}{\epsilon^6}\right)$$
$$\eta = \Theta(\epsilon^4)$$

$$\tau = \Theta(\epsilon^2)$$

* optimality of instantaneous policy iterate

Settlement II: Optimistic method

OPTIMISTIC POLICY GRADIENT PRIMAL-DUAL UPDATE

$$\pi^{+}(a \mid s) = \mathcal{P}_{\Delta(A)} \left(\hat{\pi}(\cdot \mid s) + \eta Q_{r+\lambda g}^{\pi}(s, \cdot) \right)$$
$$\lambda^{+} = \mathcal{P}_{\Lambda} \left(\hat{\lambda} - \eta V_{g}^{\pi}(\rho) \right)$$

prediction step

$$\hat{\pi}^{+}(a \mid s) = \mathcal{P}_{\Delta(A)} \left(\hat{\pi}(\cdot \mid s) + \eta Q_{r+\lambda+g}^{\pi^{+}}(s, \cdot) \right)$$

$$\hat{\lambda}^{+} = \mathcal{P}_{\Lambda} \left(\hat{\lambda} - \eta V_{g}^{\pi^{+}}(\rho) \right)$$

Popov, USSR 1980

$$\star (\hat{\pi}, \hat{\lambda}) = (\pi^+, \lambda^+) - \text{PG-PD MD (Ding et al., CDC 2022)}$$

$$\star \eta > 0$$
 - single-time-scale

Non-asymptotic last-iterate performance

Theorem (informal)

★ Distance of $(\hat{\pi}_t, \hat{\lambda}_t)$ to the set of saddle points $\Pi^* \times \Lambda^*$

$$\mathrm{Dist}(\hat{\pi}_t, \mathcal{P}_{\Pi^\star}(\hat{\pi}_t)) + \frac{1}{2}(\hat{\lambda}_t - \mathcal{P}_{\Lambda^\star}(\hat{\lambda}_t))^2 \hspace{2mm} \lesssim \hspace{2mm} \left(\frac{1}{1+C}\right)^t \hspace{2mm} \text{for any} \hspace{2mm} t \geq 0$$

Dist - visitation-weighted norm square distance

C - problem-dependent constant

 $\star \ (\hat{\pi}_t, \hat{\lambda}_t)$ – exponential stability

Implication (informal)

★ Optimality gap & Constraint violation

$$V_r^{\star}(\rho) - V_r^{(\hat{\pi}_T)}(\rho) \ \leq \ \epsilon \quad \text{and} \quad - V_g^{(\hat{\pi}_T)}(\rho) \ \leq \ \epsilon$$

$$T = \Omega\left(\log^2 \frac{1}{\epsilon}\right)$$

 η - problem-dependent constant

⋆ optimality of instantaneous policy iterate

Poster #1114: 6 pm EST, 13 Dec (Wed)

Thank you for your attention.