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Constrained policy optimization

maximize V7 (p)
™

subject to Vi(p) = 0

7w : S (states) — A (actions) — a policy
VI (p) = E[25% 0 7' (st ar) | 50 ~ p)]
Vi (p) = E[3272 g7 g(st, ar) [ so ~ p]

B FEATURES

* non-convex functional constrained optimization
* randomized optimal policy

* no uniform optimal policy across all states



Lagrangian-based approaches

L(m,A) = Vi (p) + AVy (p)

B ISSUES
* scalarization fallacy suboptimal
e.g., Zahavy et al., NeurlPS 2021
* dual methods two-time-scale
e.g., Ying, et al., AISTATS 2021; Gladin et al., AISTATS 2023
* primal-dual methods oscillation

e.g., Stooke, et al., ICML 2020; Ding et al., NeurlPS 2020



Question
Can the policy iterates of a single-time-scale policy-based
primal-dual algorithm converge to an optimal constrained

policy with non-asymptotic rate?




Non-asymptotic last-iterate performance

B REGULARIZED POLICY GRADIENT PRIMAL-DUAL METHOD

policy last-iterate convergence with sublinear error rate

* tabular dimension-free

* function approximation up to approx. error

B OPTIMISTIC POLICY GRADIENT PRIMAL-DUAL METHOD

policy last-iterate convergence with linear error rate

* tabular problem-dependent

error rate — optimality gap & constraint violation



Constrained saddle-point problem

maximize minimize L(w,A) = minimize maximize L(m,\)
mell A€EA AEA mell

B CHALLENGES

* non-convex constrained saddle-point problem
* randomized optimal policy
* no uniform optimal policy across all states

* asymmetric two-player game



Settlement I: Regularized method

B REGULARIZED LAGRANGIAN

L(m,A) = L(m,A) + 7 (H(r) + 5A?)

Li, et al., arXiv 2021

T — regularization parameter
H(r) == (1—7)E[> 72, - logm(a;|s:)] — entropy-like term

(mx, \X) — 7-near saddle point of L(7, \)

TY'T



Regularized policy gradient primal-dual method

B REGULARIZED POLICY PRIMAL-DUAL UPDATE

TH(]s) o m(|s)exp (£5QF (54)  (MWU)

A= P(A=nm)X = nV](p))

62?1,- = (Q?wt/\g/leogﬁ(S‘fa)

* 7 =0 — NPG-PD (Ding et al., NeurIPS 2020)

* 1> 0 — single-time-scale



Non-asymptotic last-iterate performance

Theorem (informal)

% Distance of (m;, \¢) to (72, \%)

T M

. 1
Dist(m, 7¥) + 5 (A = X0)? S 77 + 2 forany ¢ >0

Dist — visitation-weighted KL divergence

* (m, At) — exponential stability



Implication (informal)
% Optimality gap & Constraint violation

Vi(p) = Vi™(p) < e and —V{™)(p)

* optimality of instantaneous policy iterate

<

€



Settlement II: Optimistic method

B OPTIMISTIC POLICY GRADIENT PRIMAL-DUAL UPDATE

wHals) = Pawy (F(18) + nQay(s,))

AT = P (5\ - UVg”(P))

prediction step

Tt

#t(a|s) = PA(A)(fr(-!s)+nQT+A+g(s,-))

o= (A=)

Popov, USSR 1980
* (#,)) = (7F,A*) = PG-PD MD (Ding et al., CDC 2022)

* 1> 0 — single-time-scale



Non-asymptotic last-iterate performance

Theorem (informal)

% Distance of (7, \) to the set of saddle points IT* x A*

L R . 1\
Dlst(m,PH*(m))+§()\t—PA*()\t))2 S <1+C> forany ¢t >0

Dist — visitation-weighted norm square distance

C' — problem-dependent constant

* (#, Ar) — exponential stability



Implication (informal)

% Optimality gap & Constraint violation

V(p) =V (p) < e and -V (p) < e

T = (log? )

n — problem-dependent constant

* optimality of instantaneous policy iterate
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Thank you for your attention.




